# Linking Green Intellectual Capital and Sustainable Organizational Performance: The Roles of Organizational Ambidexterity and Innovative Work Behavior

#### <sup>1</sup>Dr. Tarique Mahmood

Associate Professor, Management Studies Department, Bahria University Karachi, Pakistan.

Email: dr.tariquerana@gmail.com

#### <sup>2</sup>Dr. Liaqat Ali

Professor, Management Studies Department, Bahria University Karachi, Pakistan.
Email: 786liaqat@gmail.com

#### <sup>3</sup>Dr. Muhammad Imran

Associate Professor, Business Studies Department, Bahria University Karachi, Pakistan. Email: drsheikhmuhammadimran@gmail.com

#### <sup>4</sup>Dr. Khawar Hussain

Assistant Professor, Business Studies Department, Bahria University Karachi, Pakistan. Email: <a href="mailto:kharwaredu@yahoo.com">kharwaredu@yahoo.com</a>

#### <sup>5</sup>Dr. Muhammad Waseem Oureshi

Assistant Professor, IBA, Gomal University Dera Ismail Khan, Pakistan.

Email: Wasimqureshippp@gmail.com

**DOI:** https://doi.org/10.5281/zenodo.17470107

#### Abstract

**Purpose-** This research will focus on examining the impact of Green Human Capital, Green Structural Capital and Green Social Capital on Sustainable Organizational Performance, with the effects of Organizational Ambidexterity being the mediating factor and the effects of Innovative Work Behavior being the moderating factor.

**Design/Methodology**- Based on the Dynamic Capabilities View, in the study, the PLS-SEM is utilized as the method of data analysis, using it to interpret the gathered data by the respondents in the organization.

**Findings**- Findings indicate that green intellectual capital dimensions have a great positive effect on Sustainable Organizational Performance. Organization -The mediating role played by organizational ambidexterity is essential whereas the relationship between ambidexterity and performance is positively mediated by Innovative Work Behavior.

**Managerial Implications**- Recommendations are to invest in green intellectual capital, develop ambidextrous strategies, and stimulate innovative work behavior among employees to be able to become long-term sustainable and competitive.

**Keywords-** Sustainable Organizational Performance, Dynamic Capabilities View, Green Intellectual Capital, Organizational Ambidexterity, and Innovative Work Behavior.

#### Introduction

Sustainable organizational performance (SOP) is an inclusive approach of ensuring long term success through the incorporation of economic, social and environmental aspects, the triple bottom line (Wang & Zhang, 2025). Academic studies assume that it is not limited to short-term financial indicators but it is also about long-term sustainability and value-generation to all stakeholders (M. H. Khan & Muktar, 2024). SOP paradigm requires that resources be strategically aligned to environmental, social and governance (ESG) principles and thereby resilience, agility and adaptive capacity is created in a dynamic global environment (AlKetbi & Rice, 2024). Based on the efficient oversight of economic wellbeing, social justice and ecological stewardship, the current operations of the organization will not hinder the potential sustainable organizational future (Mahmood & Mubarik, 2020). Consequently, SOP is defined as a synergistic equilibrium of efficiency, ethical behavior, and ecological accountability, which guarantees competitive advantage and long-term legitimacy of the organization (Jiang, Jamil, Zaman, & Fatima, 2024).

The need to sustain the performance of organizations is a challenge that is systemic. The primary barrier is the tension in the profitability of the capital markets where short-term financial gains are necessary and long-term investment in the environmental and social capital (Abid, Ceci, & Aftab, 2024). This is compounded by high measurement complexities; there is no standardized and reliable measures of non-financial performance which leaves uncertainty in assessing the actual impact of sustainability (Alfarizi, Widiastuti, & Ngatindriatun, 2024). At the internal level, organizations must face deep cultural and structural inertia, in many cases being unable to integrate the ESG principles into the fundamental operational and strategic paradigm and this task demands Green Intellectual Capital (GIC) (Mubarik, Bontis, Mubarik, & Mahmood, 2022). On the external level, organizations have to deal distinct, frequently conflicting stakeholder demands and negotiate a changing, frequently fragmented regulatory environment (Basit et al., 2024). Therefore, paradoxical tensions produce strategic dilemmas, which complicate governance and resource allocation, and may culminate in decoupling between sustainability rhetoric and substantive action at the cost of the entire integrated balance of the triple bottom line (Hina et al., 2024).

GIC provides a unifying solution path that can eliminate these tensions and challenges. GIC is a significant intangible resource that includes knowledge-based assets with a particular focus on environmental sustainability (Mahmood, Mubarik, Islam, & Naghavi, 2021). To build a culture sensitive to sustainability, Green Human Capital (GHC) builds the employee competencies, which reduce inertia in culture. Additionally, Green Structural Capital (GSC) captures such knowledge in processes, systems and innovation capabilities, and offers the standardized metrics and structures to reconcile long-term objectives to operational reality (Wei, Wang, Jiang, & Feng, 2024). Similarly, Green Social Capital (GSOC) helps build trust and cooperation with external stakeholders, bringing expectations into balance and developing relational assets that relieve

regulatory and market pressures. Therefore, GIC would shift sustainability out of the fringe, to the center of the strategic portfolio, and into a quantifiable strategic benefit, and paradoxical tensions would lead towards resolving (Rehan, Yeo, Khan, & Tan, 2025).

Organizational ambidexterity (OA) is critical and through which GIC promotes sustainable performance of the organization. The dynamic capability of a firm that can both utilize the existing competencies to achieve efficiency and pursue new opportunities in innovation is referred to as OA (Zahid, Zhang, Shahzad, Junaid, & Shrivastava, 2024). The knowledge resources are the basis of any organization, which is provided by GIC, and the ability to use it at the same time is facilitated by OA, allowing to focus on both exploitation and exploration of the efficiencies in the currently available green processes and to find new sustainable innovations (Odhano, Mahmood, Nagyi, & Ahmed, 2025). OA can assure the strategic conversion of GIC to tangible delivery by dynamically reallocating the resources, thus balancing the triple bottom line and providing a direct way of sustaining competitive advantage due to agile and value-generating reaction to the changing stakeholder and market requirements (Astuti, Datrini, Chariri, & Januarti, 2025). Moreover, Innovative Work Behavior (IWB) is a set of voluntary activities by the employees to initiate, market, and actualize new ideas towards better performance (Lewaherilla, Sutrisno, Ausat, & Gadzali, 2024). IWB vibrates the dexterous tension between exploration and exploitation by supplying the required employee-level measures to achieve a successful execution of both strategic agendas (Hadi, Setiawati, Kirana, Lada, & Rahmawati, 2024).

Research gaps covered in this research concerning the synergistic effectiveness of the entire GIC triad (Human, Structural, and Social) on sustainable organization performance, rather than isolated components (Shahbaz & Malik, 2025). Various research study demands empirical research on ways Organizational Ambidexterity mediates this relation, especially in institutional settings with different institutional contexts. In addition, the IWB is theorized as a moderator though, its interactive nature in relation to ambidexterity to improve sustainable outcomes has not been well explored (Siddiqui, Anwer, John, & Rabie, 2024). Additionally, there is a lack of empirical testing of the integrated mediation-moderation model that Organizational Ambidexterity and Innovative Work Behavior (IWB) co-exist as a mediator and moderator in the Green Intellectual Capital (GIC) and sustainable performance relationship (Shahbaz, Ahmad, & Malik, 2025).

#### **Theory Development and Literature Review**

Green Intellectual Capital (GIC): Green Human Capital (HC), Green Structural Capital (SC) & Green Social Capital (GSOC):

#### **Dynamic Capabilities View (DCV)**

The theory of Dynamic Capabilities View (DCV) highlights the capability of an organization to combine, develop, and re-arrange both internal and external resources in order to cope with the fast-changing environments (Mehrabi et al., 2025). In contrast to the resource-based view that emphasizes on the existence of fixed resources, DCV points out that firms create dynamic

capabilities in order to attain sustainable competitive advantage (Teece, Peteraf, & Leih, 2016). DCV in a sustainability context describes how green intellectual capital, organizational ambidexterity and innovative work behavior allow firms to feel opportunities, grab them and change operations so that they are successful long term both ecologically and economically (Kalubanga & Gudergan, 2022). Through human, structural, and social capital, organizations are able to develop dynamic capabilities which lead to innovation and flexibility, which, in the end, increase sustainable organizational performance in unpredictable and competitive markets (Son, Roscoe, & Sodhi, 2025).

#### **Green Human Capital**

The collective environmental knowledge, skills, abilities, and awareness held by employees to create and execute sustainable practices by organizations is known as green Human Capital (GHC) (Ahlawat, Sharma, & Kumar, 2023). GHC focuses on the ability of employees to incorporate environmental issues when making decision-making, problem-solving, and innovations (Asiaei, O'Connor, Barani, & Joshi, 2023). It indicates the capacity of the work force to create environment-friendly solutions, to increase resource utilization and adherence to environmental guidelines. GHC promotes the sustainability-focused mindset, thus increasing the organizational flexibility to environmental challenges (Alharbi, 2025).

#### **Green Structural Capital**

Green Structural Capital (GSC) is described as institutionalized systems, processes, routines, and technologies that enable incorporation of sustainability in an organization. GSC is the organizational framework that prevails even after the departure of the employees, meaning that the eco-friendly practices would be maintained (Shehzad, Zhang, Dost, Ahmad, & Alam, 2023). It encompasses environmental management systems, green policies, databases, patents, and technological structures that are aimed at increasing sustainability. Sustainability is a core aspect that can be integrated into systemic arrangements of the GSC, which facilitates uniformity, effectiveness, and inventiveness of environmental practices (Marco-Lajara, Zaragoza-Sáez, Martínez-Falcó, & Sánchez-García, 2023).

#### **Green Social Capital**

Green Social Capital (GSOC) is described as networks, relationships, and trust and shared environmental values among employees, stakeholders and communities that contribute to collective commitment to sustainability (Ghodbane & Alwehabie, 2023). GSOC advocates teamwork and self-interest in ensuring that the organization practices friendliness toward the environment (Ahlawat et al., 2023). It facilitates an exchange of knowledge, resources and joint problem solving, which is paramount in the development and implementation of green initiatives. Powerful GSOC can increase collaboration with suppliers, customers, and regulators, forming a larger sustainability ecosystem (Shahbaz, Naseem, Battisti, & Alfiero, 2024). Through trust-based

relationships, GSOC leads to innovation, enhances environmental standards compliance and supports long-term sustainable organizational performance (Zahid et al., 2024).

#### **Sustainable Organization Performance**

Sustainable Organizational Performance (SOP) refers to the capacity of an organization to attain long-term success by balancing between the economic growth, the environment and the social well-being (Nawangsari, Siswanti, Arijanto, & Wahyu, 2025). SOP is a measure of effectiveness of an organization in applying the concepts of sustainability in its operations, strategies, and results (Astuti, Datrini, & Chariri, 2023). It focuses on minimization of ecological footprints, maximum resource efficiency, and compliance to environmental standards whilst remaining profitable and competitive (Utomo et al., 2023). SOP aligns economic, environmental and social objectives to resilience, adaptability and sustainable value creation to stakeholders in an ever-changing global environment (Soomro & Afridi, 2023).

#### **Organizational Ambidexterity**

Organizational Ambidexterity (OA) can be described as a capacity of the firm to pursue new opportunities at the same time exploiting the available resources and capabilities as means of realizing balanced and sustainable growth (Restuputri, Masudin, Septira, Govindan, & Widayat, 2024). OA highlights the two-fold ability of the organization to innovate by experimenting, being creative and adopting new practices as well as streamlining the existing processes in order to make them efficient and reliable (Hwang, Lai, & Wang, 2023). OA promotes both the short term performance and long term flexibility, thus it is critical in the incorporation of sustainability in organization strategies. Finally, OA encourages innovation, resilience and on-going improvement in operations (Sarmento, Simoes, & Lages, 2024).

#### **Innovative Work behavior**

The concept of Innovative Work Behavior (IWB) can be described as the deliberate creation, sale, and actualization of novel ideas by the employees to enhance processes, products or services in an organization (Srirahayu, Ekowati, & Sridadi, 2023). IWB is proactive in finding opportunities, proposing inventive solutions and making changes that bring value. It takes problem identification, brainstorming and working together to make innovation ideas a reality (Ajmal, Sareet, & Islam, 2025). Being oriented towards sustainability, IWB allows establishing environment-friendly innovations and efficient approaches, reinforcing the long-term organizational performance and guaranteeing compliance with the environmental and social objectives (Shahbaz et al., 2024).

#### **Green Human Capital and Sustainable Organization Performance**

GHC is the integrated knowledge and skills as well as environmental awareness of workers that can help organizations to bring sustainability into their operations (Alharbi, 2025). By empowering employees with green knowledge they boost eco-friendly innovation, effective use of resources and making environmentally friendly decisions, which boosts SOP directly (Asghar, Ullah, & Bangash, 2025). Companies that have high GHC instill the culture of environmental accountability, which encourages employees to participate in green actions that are in line with strategic objectives (Elnagar & Aljuwaiber, 2025). When organizations incorporate sustainability

in human resource capacities, they not only attain long term ecological objectives, but also attain competitive advantages as well (Asiaei et al., 2023). Therefore, GHC is likely to have a positive impact on SOP by being proactive, knowledge-driven and environmental-oriented behavior (Hoang Thanh & Truong Cong, 2024).

**H1**: GHC has a significant impact on SOP

#### **Green Structural Capital and Sustainable Organization Performance**

GSC is institutionalized knowledge, systems and processes that endorse sustainability in an organization. It encompasses environmentally friendly technologies, green policies, databases, and management practices which are not lost when the employees move out of the firm (Nawangsari et al., 2025). With good GSC laid out by organizations, there is a platform of sustained application of sustainable initiatives. This makes sure that environmental practices are not merely founded on personal actions but rather, on organizational values and activities (Shehzad et al., 2023). It also supports knowledge sharing and collaboration and it allows organizations to keep on upgrading their sustainability practices. Presence of strong green systems also enhances credibility among the stakeholders and environmental regulations (Begum, Ashfaq, Asiaei, & Shahzad, 2023). Thus, green structural capital will impact positively on SOP because it will institutionalize sustainable environmental responsible practices (Hina et al., 2024).

H2: GSC has a significant impact on SOP

#### Green Social Capital and Sustainable Organization Performance

GSOC is the network, relationship, trust and shared values between employees, stakeholders, and communities that promotes sustainable practices. In cases where the organizations build on the powerful GSOC, the environment in which the collaboration and knowledge sharing contributes towards environmentally friendly solutions is established (Albhirat, Zulkiffli, Salleh, & Zaki, 2023). Close relationships with external stakeholders, suppliers and customers allow adopting sustainable technologies and practices in the entire value chain (Rehan et al., 2025). GSOC also benefits alliances with regulatory organizations and environmental bodies, boosting compliance and creativity. In addition, it offers resources and support systems required in the sustainability-based projects (Astuti et al., 2023). Through shared relationships and networks, organizations will have legitimacy and competitive advantages. Therefore, GSOC is likely to have a positive effect on SOP through the establishment of collaborative work towards the long-term environmental and economic success (Nawangsari et al., 2025).

**H3**: GSOC has a significant impact on SOP

#### Organizational Ambidexterity and Sustainable Organization Performance

OA is defined as the capacity of the firm to strike a balance between exploration and exploitation of the new opportunities as well as what they have on their hand in terms of resources and capabilities (Hafeez, Yasin, Zawawi, Odilova, & Bataineh, 2025). Within the framework of sustainability, OA will be able to produce green solutions as well as to improve the existing practice within the frames of minimizing the impact on the environment (Martínez-Falcó, Marco-

Lajara, Zaragoza-Sáez, & Sánchez-García, 2024). Additionally, ambidexterity enhances a competitive edge through long-term innovation and short-term efficiency in sustainability efforts (Mankgele, 2023). Thus, OA should be positively associated with SOP as it should help to maintain a balance between new green initiatives and the sustainability of already existing sustainable practices to achieve the long-term growth and SOP and their ecological responsibility (Odhano et al., 2025).

H4: OA has a significant impact on SOP

#### **Innovative Work Behavior and Sustainable Organization Performance**

IWB is a deliberate generation, advocacy and application of novel concepts by employees to enhance organizational procedures, products or services (Mahmood & Mubarik, 2020). Workers with IWB can help in the development of green solutions, including energy efficient processes, garbage minimization plans or environmentally safe products (Ajmal, Sareet, & Islam, 2024). This assists the organizations not only to align to the expectations of regulation and the society but also to improve competitiveness in the markets that are concerned with sustainability (Srirahayu et al., 2023). IWB promotes a culture of constant improvement, employees take the initiative to deal with challenges they face in the environment and to incorporate SOP. Moreover, it fosters teamwork and exchange of knowledge which enhances the effectiveness of sustainable programs in the organization (Shahbaz et al., 2024).

**H5:** IWB has a significant impact on SOP

#### Green Human Capital and Organizational Ambidexterity

GHC, which involves knowledge, skills and commitment of the employees toward the environment is a key factor in promoting organizational ambidexterity (Altaee, Saleh, AlZeer, & Tunsi, 2024). The workers with green knowledge are in a better position to participate in both exploration and exploitation activities that are sustainable and efficient to the current operations. On the exploration front, green human capital promotes innovation and invention of environmentally-friendly technology, products and processes (Martínez-Falcó et al., 2024). On the exploitation, it assists the active implementation of the already established sustainable practices, which will guarantee efficiency in resources and environmental standards. This two facet role enables an organization to be more flexible to changing sustainability requirements (Marco-Lajara et al., 2023). Through such green capabilities, the organizations can make themselves more ambidextrous by incorporating environmental issues in both strategic innovations and operational excellence. Thus, it is hoped that the GHC has a positive impact on OA (Moreno-Luzon, Gil-Marques, Lloria, & Salas-Vallina, 2024).

**H6:** GHC has a positive impact on OA

#### **Green Structural Capital and Organizational Ambidexterity**

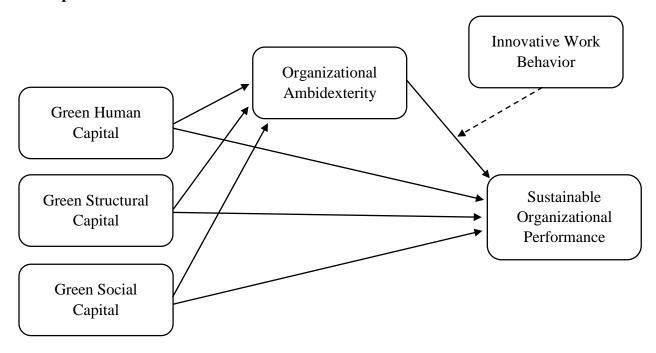
GSC that encompasses sustainable processes, systems, technologies, and organizational routines forms a good underpinning towards building OA (Asiaei et al., 2023). Incorporating sustainability into formal arrangements and process can allow organizations to both encourage the exploration

of new green opportunities and exploitation of the ones that already exist that are eco-efficient (Begum et al., 2023). GSC on the exploration side offers platforms including databases, knowledge systems, and eco-innovation frameworks through which new sustainable ideas and technologies are created (Elmakkawy, Hassan, & Magdy, 2025). On the exploitation dimension, it converts effective policies, like energy saving procedures and waste disposal mechanisms, and therefore, maintains a uniform performance. Therefore, GSC organizations are better placed to strike the balance between exploration and exploitation, thus a significant source of OA (Shehzad et al., 2023).

H7: GSC has a positive impact on OA

#### Green Social Capital and Organizational Ambidexterity

The networks, trust, and shared environmental values among the employees and other external stakeholders in the form of green social capital are particularly useful in ensuring OA (Pashazadeh & Teymoriazar, 2025). The employees work well together through good internal relationships where the employees communicate and share ideas that help explore innovative green solutions as well as contribute to exploitation of known sustainable practices (Shehzad et al., 2023). On the outside, it has access to knowledge, resources and technologies through relationships with suppliers, customers and regulatory bodies that benefits eco-innovation as well as operational efficiency. GSOC creates a culture of synergy and collaborating with employees, which creates an incentive to test new sustainability projects and should improve on existing systems (Hafeez et al., 2025). Thus, OA will be affected positively through GSOC as they will use collaborative networks and shared environmental commitment to enhance both innovation and efficiency in sustainability practices (Fatima, Ahmed, & Mahnoor, 2023).


**H8**: GSOC has a positive impact on OA

## Innovative Work Behavior plays moderating role between Organizational Ambidexterity and Sustainable Organization Performance

The relationship between OA and SOP can be enhanced through innovative work behavior as one of the key moderating variables (Hafeez et al., 2025). Although ambidexterity helps organizations strike a balance between exploration and exploitation of green innovation and the current sustainable practices, the ultimate benefits are experienced when the employees are involved in the innovation behaviors (Moreno-Luzon et al., 2024). Employees turn the ambidextrous strategies into a practical sustainable reality through their generation of ideas, promotion, and implementation. As an example, innovative workers could turn the exploratory projects into a viable eco-friendly technology or improve the efficiency of the current systems by being creative (Sarmento et al., 2024). This intermediary position makes sure that the two-fold potential of ambidexterity is convincingly transferred into an environmental and economic long-term gain. The ambidexterity potential can go underutilized without IWB in place (Mankgele, 2023). The IWB is therefore anticipated to have a positive moderating influence on the connection between OA and SOP by increasing the power of both activities of exploration and exploitation (Restuputri et al., 2024).

H9: IWB plays moderating role between OA and SOP

#### **Conceptual Framework**



#### Methodology

#### **Measuring Instrument**

In this study, data was collected by primary method using questionnaires as an instrument of data collection. For this research, a 5-point Likert scale is created. The scales range from 1, indicating Strongly Agree, to 5, indicating multiple Strongly Disagree.

**Table 1 Instrument** 

| S.no | Constructs               | No. of | Source                                   |
|------|--------------------------|--------|------------------------------------------|
|      |                          | items  |                                          |
| 1.   | Green Human Capital      | 5      | (Rezaei, Khalilzadeh, & Soleimani, 2021) |
| 2.   | Green Structural Capital | 5      | (Cabrita & Bontis, 2008)                 |

| 3.        | Green Social Capital                 | 5 | (Al-Omoush, Simón-Moya, &               |
|-----------|--------------------------------------|---|-----------------------------------------|
|           |                                      |   | Sendra-García, 2020)                    |
| 4.        | Organizational Ambidexterity         | 6 | (As'ad, Brasit, Muis, & Umar, 2024)     |
| <b>5.</b> | Innovative Work Behavior             | 9 | (Janssen, 2000; Siddiqui et al., 2024)  |
| 6.        | Sustainable Organization Performance | 5 | Schöggl, Stumpf, and Baumgartner (2024) |

#### **Sample and Data Collection**

Table 2 shows the demographic characteristics of the respondents, with emphasis on gender, position, company size, and work experience. There are 81% male and 19% female respondents, indicating a higher representation of males. The data on work positions shows that 31.5% are CEOs, 19% are senior managers, 24.5% are middle managers, and 25% are operational staff, providing both managerial and operational perspectives. Company size distribution reveals that 43% of companies have fewer than 50 employees, 19% have 50–250 employees, and 55% have more than 250 employees, highlighting a strong representation from larger organizations. In terms of experience, 43% have 5–10 years of experience, 36% have 10–15 years, and 21% have more than 20 years, indicating a balanced mix of experience in their field.

**Table 2 Respondents' Profile** 

| Measures        | Details           | Frequency | Percentage (%) |
|-----------------|-------------------|-----------|----------------|
| Gender          | Male              | 162       | 81             |
|                 | Female            | 38        | 19             |
| Work position   | CEO               | 63        | 31.5           |
|                 | Senior manager    | 38        | 19             |
|                 | Middle manager    | 49        | 24.5           |
|                 | Operational staff | 50        | 25             |
| Company size    | < 50              | 52        | 43             |
|                 | 50-250            | 38        | 19             |
|                 | >250              | 110       | 55             |
| Work experience | 5-10 years        | 86        | 43             |
|                 | 10-15 years       | 72        | 36             |
|                 | >20years          | 42        | 21             |

#### **PLS-SEM Analysis**

The PLS-SEM is used for analysis because it helps create a profound variance. The structural model satisfies the test of hypothesis, and the measurement model incorporates the instrument's reliability in PLS-SEM. The use of SmartPLS to explore the study hypotheses is based on a number of considerations, according to Hair, Risher, Sarstedt, and Ringle (2019). Moreover, according to S. Khan, Rashid, Rasheed, and Amirah (2023), it is particularly appropriate when the aim of the study is to forecast or elucidate a theoretical framework from a predictive perspective.

#### **Results and Analysis**

#### **Confirmatory Factor Analysis (CFA)**

This study evaluated the internal consistency of the components using Cronbach's alpha, composite reliability (CR), factor loadings and average variance extracted (AVE), with the findings presented in Table 3. Constructs demonstrate strong reliability, with Cronbach's alpha values exceeding 0.7, indicating effective measurement (Chin, 2009). This affirms the fundamental integrity of the green intellectual capital framework, which includes GHC, GSOC, GSC, and their correlations with OA and IWB, influenced by SOP.

**Table 3 Confirmatory Factor Analysis** 

| Construct Name               | Items | Loading | Cronbach's alpha | CR    | AVE   |
|------------------------------|-------|---------|------------------|-------|-------|
| Green Human Capital          | GHC1  | 0.917   |                  |       |       |
|                              | GHC2  | 0.727   |                  |       |       |
|                              | GHC3  | 0.837   | 0.903            | 0.928 | 0.723 |
|                              | GHC4  | 0.809   |                  |       |       |
|                              | GHC5  | 0.944   |                  |       |       |
| Green Social Capital         | GSOC1 | 0.782   |                  |       |       |
|                              | GSOC2 | 0.705   |                  |       |       |
|                              | GSOC3 | 0.883   | 0.882            | 0.915 | 0.683 |
|                              | GSOC4 | 0.854   |                  |       |       |
|                              | GSOC5 | 0.894   |                  |       |       |
| Green Structural Capital     | GSC1  | 0.954   |                  |       |       |
|                              | GSC2  | 0.821   |                  |       |       |
|                              | GSC3  | 0.816   | 0.900            | 0.926 | 0.717 |
|                              | GSC4  | 0.749   |                  |       |       |
|                              | GSC5  | 0.880   |                  |       |       |
| Innovative Work Behavior     | IWB1  | 0.912   |                  |       |       |
|                              | IWB2  | 0.880   |                  |       |       |
|                              | IWB3  | 0.841   |                  |       |       |
|                              | IWB4  | 0.825   |                  |       |       |
|                              | IWB5  | 0.769   | 0.872            | 0.899 | 0.516 |
|                              | IWB6  | 0.727   |                  |       |       |
|                              | IWB7  | 0.867   |                  |       |       |
|                              | IWB8  | 0.771   |                  |       |       |
|                              | IWB9  | 0.883   |                  |       |       |
| Organizational Ambidexterity | OA1   | 0.749   |                  |       |       |
|                              | OA2   | 0.880   | 0.702            | 0.050 | 0.505 |
|                              | OA3   | 0.727   | 0.793            | 0.853 | 0.597 |
|                              | OA4   | 0.867   |                  |       |       |

|                                      | OA5  | 0.771 |       |       |       |
|--------------------------------------|------|-------|-------|-------|-------|
|                                      | OA6  | 0.727 |       |       |       |
| Sustainable Organization Performance | SOP1 | 0.614 |       |       |       |
|                                      | SOP2 | 0.582 |       |       |       |
|                                      | SOP3 | 0.794 | 0.870 | 0.905 | 0.658 |
|                                      | SOP4 | 0.836 |       |       |       |
|                                      | SOP5 | 0.638 |       |       |       |

#### **Discriminant Validity**

#### a) Heterotrait-monotrait ratio (HTMT)

Table 4 presents satisfactory results, with all values below 0.9 (Mardani et al., 2020). The Heterotrait-Monotrait Ratio (HTMT) values reveal significant interrelationships among sustainability constructs (Anuar, Saad, & Yusoff, 2018). Notably, the strongest results are in between GSOC  $\leftrightarrow$  GHC (0.485) and GSC  $\leftrightarrow$  GHC (0.790). These are quite near but still below the 0.90 criterion, indicating that these constructs are highly correlated; however, they are statistically separate.

**Table 4 Heterotrait-monotrait ratios (HTMT)** 

|      | GHC   | GSOC  | GSC   | IWB   | OA    | SOP |
|------|-------|-------|-------|-------|-------|-----|
| GHC  |       |       |       |       |       |     |
| GSOC | 0.485 |       |       |       |       |     |
| GSC  | 0.790 | 0.558 |       |       |       |     |
| IWB  | 0.558 | 0.710 | 0.713 |       |       |     |
| OA   | 0.618 | 0.564 | 0.834 | 0.702 |       |     |
| SOP  | 0.728 | 0.668 | 0.785 | 0.745 | 0.621 |     |

#### b) Fornell and Larcker Criterion

Table 5 presents the relevant findings, indicating that all the square roots of the AVE (highlighted in bold) exceed the correlations between variables. This confirms the discriminant validity of the constructs (Fornell & Larcker, 1981). The Fornell and Larcker criterion results indicate strong discriminant validity among the constructs, with GHC (0.850) and GSC (0.847) showing the highest distinctiveness.

**Table 5: Fornell and Larcker Criterion** 

| Constructs | GHC   | GSOC  | GSC   | IWB   | OA | SOP |
|------------|-------|-------|-------|-------|----|-----|
| GHC        | 0.850 |       |       |       |    |     |
| GSOC       | 0.440 | 0.827 |       |       |    |     |
| GSC        | 0.716 | 0.497 | 0.847 |       |    |     |
| IWB        | 0.555 | 0.646 | 0.672 | 0.718 |    |     |

| OA  | 0.543 | 0.502 | 0.718 | 0.636 | 0.705 |       |
|-----|-------|-------|-------|-------|-------|-------|
| SOP | 0.670 | 0.603 | 0.729 | 0.697 | 0.809 | 0.811 |

#### **Cross-loading for Correlation**

The Table 6 cross-loadings of items which verifies the discriminant validity (Gefen & Straub, 2005), reveals significant relationships among various constructs, with items like GHC5 (0.944) and GHC1 (0.917) demonstrating strong loadings, indicating their interconnectedness of constructs implies that enhancing importance in measuring performance of the organization with intellectual such as GHC may lead to increased SOP.

**Table 6: Cross loadings** 

|       | GHC   | GSOC  | GSC   | IWB   | OA    | SOP   |
|-------|-------|-------|-------|-------|-------|-------|
| GHC1  | 0.917 | 0.438 | 0.627 | 0.496 | 0.504 | 0.632 |
| GHC2  | 0.727 | 0.378 | 0.489 | 0.385 | 0.325 | 0.480 |
| GHC3  | 0.837 | 0.232 | 0.578 | 0.472 | 0.414 | 0.504 |
| GHC4  | 0.809 | 0.319 | 0.557 | 0.405 | 0.406 | 0.487 |
| GHC5  | 0.944 | 0.470 | 0.752 | 0.572 | 0.602 | 0.701 |
| GSC1  | 0.643 | 0.480 | 0.954 | 0.655 | 0.697 | 0.741 |
| GSC2  | 0.901 | 0.442 | 0.821 | 0.559 | 0.518 | 0.623 |
| GSC3  | 0.476 | 0.416 | 0.816 | 0.586 | 0.596 | 0.551 |
| GSC4  | 0.490 | 0.411 | 0.749 | 0.463 | 0.493 | 0.468 |
| GSC5  | 0.536 | 0.368 | 0.880 | 0.570 | 0.702 | 0.666 |
| GSOC1 | 0.369 | 0.782 | 0.356 | 0.495 | 0.391 | 0.443 |
| GSOC2 | 0.283 | 0.705 | 0.304 | 0.421 | 0.391 | 0.401 |
| GSOC3 | 0.399 | 0.883 | 0.497 | 0.559 | 0.466 | 0.562 |
| GSOC4 | 0.346 | 0.854 | 0.427 | 0.595 | 0.428 | 0.563 |
| GSOC5 | 0.416 | 0.894 | 0.447 | 0.580 | 0.390 | 0.497 |
| IWB1  | 0.515 | 0.595 | 0.574 | 0.912 | 0.509 | 0.547 |
| IWB2  | 0.474 | 0.610 | 0.518 | 0.880 | 0.483 | 0.546 |
| IWB3  | 0.494 | 0.455 | 0.534 | 0.841 | 0.507 | 0.550 |
| IWB4  | 0.388 | 0.466 | 0.476 | 0.825 | 0.447 | 0.494 |
| IWB5  | 0.271 | 0.529 | 0.335 | 0.769 | 0.302 | 0.413 |
| IWB6  | 0.189 | 0.170 | 0.303 | 0.448 | 0.295 | 0.257 |
| IWB7  | 0.113 | 0.352 | 0.211 | 0.470 | 0.255 | 0.349 |
| IWB8  | 0.067 | 0.261 | 0.318 | 0.421 | 0.328 | 0.293 |
| IWB9  | 0.649 | 0.516 | 0.748 | 0.676 | 0.709 | 0.745 |
| OA1   | 0.459 | 0.387 | 0.559 | 0.450 | 0.587 | 0.466 |
| OA2   | 0.358 | 0.299 | 0.422 | 0.473 | 0.694 | 0.699 |
| OA3   | 0.334 | 0.431 | 0.479 | 0.484 | 0.727 | 0.722 |
| OA4   | 0.423 | 0.387 | 0.621 | 0.560 | 0.867 | 0.627 |
| OA5   | 0.465 | 0.435 | 0.582 | 0.444 | 0.771 | 0.512 |

| OA6  | 0.214 | 0.041 | 0.322 | 0.147 | 0.532 | 0.239 |
|------|-------|-------|-------|-------|-------|-------|
| SOP1 | 0.723 | 0.592 | 0.883 | 0.739 | 0.804 | 0.880 |
| SOP2 | 0.548 | 0.612 | 0.572 | 0.598 | 0.660 | 0.862 |
| SOP3 | 0.604 | 0.448 | 0.556 | 0.504 | 0.524 | 0.763 |
| SOP4 | 0.408 | 0.361 | 0.465 | 0.422 | 0.596 | 0.776 |
| SOP5 | 0.367 | 0.374 | 0.371 | 0.498 | 0.652 | 0.766 |

Note: All self-loadings are significant (bold).

#### **Common Bias Method**

Table 7 provides the overall VIF values, which suggest that most constructs demonstrate low to moderate levels of multicollinearity. The VIF values for various constructs related to GHC, GSOC, GSC, OA, IWB and SOP indicate multicollinearity, with values ranging from 1.346 to 3.755.

**Table 7 Common Bias Variance** 

| Constructs | VIF   |
|------------|-------|
| GHC1       | 1.868 |
| GHC2       | 1.643 |
| GHC3       | 2.444 |
| GHC4       | 2.129 |
| GHC5       | 2.447 |
| GOC5       | 3.334 |
| GSC1       | 3.232 |
| GSC2       | 2.271 |
| GSC3       | 2.151 |
| GSC4       | 1.855 |
| GSC5       | 3.755 |
| GSOC1      | 1.868 |
| GSOC2      | 1.501 |
| GSOC3      | 2.898 |
| GSOC4      | 2.447 |
| IWB1       | 2.271 |
| IWB2       | 2.151 |
| IWB3       | 3.289 |
| IWB4       | 3.232 |
| IWB5       | 2.969 |
| IWB6       | 1.746 |
| IWB7       | 1.789 |
| IWB8       | 1.805 |
| IWB9       | 1.485 |
| OA1        | 1.346 |
| OA2        | 2.411 |
| OA3        | 2.476 |
| OA4        | 3.421 |

# | Al-Qantara, Volume 11, Issue 3 (2025) | Research Article OA5 OA6 SOP1 2.794 SOP2 2.514 SOP3 SOP4 2.795

2.684

#### Predictability of the model

SOP5

The model demonstrates sufficient predictive power, as the adjusted R-squared values exceed 0.10. Table 8 provides the path coefficients and the significance of the structural model for the entire sample. The model's Predictability indicates that approximately 54.4% of the variance in Organizational Ambidexterity and 76.7% in Organization Performance can be explained by the variables analyzed. The slightly higher R-squared for Sustainable Organizational Performance suggests the model may more effectively predict it.

**Table 8 Predictability of the Model** 

|                                      | R-square | R-square adjusted |
|--------------------------------------|----------|-------------------|
| Organizational Ambidexterity         | 0.544    | 0.539             |
| Sustainable Organization Performance | 0.767    | 0.762             |

#### **Hypothesis Results**

The table shows the results of hypothesis testing that assess the relationship between green intellectual capital and organizational ambidexterity, innovative work behavior and sustainable organizational performance. Results indicate that, Green Human Capital (beta=0.231), Green Structural Capital (beta=0.540) and Green Social Capital (beta=0.147) are important in promoting Sustainable Organizational Performance. The performance is the most impacted by Organizational Ambidexterity (beta=0.491). Performance is also directly enhanced by Innovative Work Behavior (beta=0.126). In addition, Green Human Capital (beta=0.269), Green Structural Capital (beta=0.605), and Green Social Capital (beta=0.189) have positive effects on Organizational Ambidexterity. Notably, the correlation of Ambidexterity and Performance is mediated by Innovative Work Behavior (beta=0.294), which reinforced its relevance. Each of the hypotheses is accepted and confirms the importance of green intellectual capital, ambidexterity, and innovation as the key factors in attaining sustainable organizational results.

**Table 9 Hypothesis testing** 

| S.no | Regression path | Beta | Standard<br>deviation<br>(STDEV) | T statistics ( O/STDEV ) | P values | Decision |
|------|-----------------|------|----------------------------------|--------------------------|----------|----------|
|------|-----------------|------|----------------------------------|--------------------------|----------|----------|

## | Al-Qantara, Volume 11, Issue 3 (2025) |

### Research Article

| H1        | Green Human          | 0.231 | 0.050 | 4.660          | 0.000 | Accepted |
|-----------|----------------------|-------|-------|----------------|-------|----------|
|           | Capital ->           |       |       |                |       | 1        |
|           | Sustainable          |       |       |                |       |          |
|           | Organization         |       |       |                |       |          |
|           | Performance          |       |       |                |       |          |
| <b>H2</b> | Green Structural     | 0.540 | 0.151 | 3.802          | 0.000 | Accepted |
|           | Capital ->           |       |       |                |       | 1        |
|           | Sustainable          |       |       |                |       |          |
|           | Organization         |       |       |                |       |          |
|           | Performance          |       |       |                |       |          |
| Н3        | Green Social Capital | 0.147 | 0.035 | 4.223          | 0.000 | Accepted |
| 110       | -> Sustainable       | 0.117 | 0.022 | 225            | 0.000 | ricopica |
|           | Organization         |       |       |                |       |          |
|           | Performance          |       |       |                |       |          |
| H4        | Organizational       | 0.491 | 0.054 | 9.080          | 0.000 | Accepted |
| 117       | Ambidexterity ->     | 0.171 | 0.051 | 2.000          | 0.000 | recepted |
|           | Sustainable          |       |       |                |       |          |
|           | Organization         |       |       |                |       |          |
|           | Performance          |       |       |                |       |          |
| Н5        | Innovative Work      | 0.126 | 0.045 | 2.801          | 0.000 | Accepted |
| 113       | Behavior ->          | 0.120 | 0.043 | 2.001          | 0.000 | recepted |
|           | Sustainable          |       |       |                |       |          |
|           | Organization         |       |       |                |       |          |
|           | Performance          |       |       |                |       |          |
| Н6        | Green Human          | 0.269 | 0.076 | 3.539          | 0.000 | Accepted |
| 110       | Capital ->           | 0.20) | 0.070 | 3.337          | 0.000 | necepted |
|           | Organizational       |       |       |                |       |          |
|           | Ambidexterity        |       |       |                |       |          |
| Н7        | Green Structural     | 0.605 | 0.086 | 7.010          | 0.000 | Accepted |
| 117       | Capital ->           | 0.003 | 0.000 | 7.010          | 0.000 | Accepted |
|           | Organizational       |       |       |                |       |          |
|           | Accepted             |       |       |                |       |          |
|           | Ambidexterity        |       |       |                |       |          |
| Н8        | Green Social Capital | 0.189 | 0.054 | 3.478          | 0.001 | Accepted |
| 110       | -> Organizational    | 0.107 | 0.054 | J. <b>T</b> /0 | 0.001 | Accepted |
|           | Ambidexterity        |       |       |                |       |          |
| Н9        | Innovative Work      | 0.294 | 0.145 | 2.012          | 0.020 | Accepted |
| 11)       | Behavior x           | 0.274 | 0.143 | 2.012          | 0.020 | Accepted |
|           | Organizational       |       |       |                |       |          |
|           | Ambidexterity ->     |       |       |                |       |          |
|           | Sustainable          |       |       |                |       |          |
|           | Organization         |       |       |                |       |          |
|           | Performance          |       |       |                |       |          |
|           | r en formance        |       |       |                |       |          |

#### Discussion

The structural model analysis gives strong empirical evidence to all the nine hypotheses proposed. The findings demonstrate that an important antecedent of Sustainable Organizational Performance (SOP) is Green Intellectual Capital (including human, structural, and social capital), Organizational Ambidexterity, and Innovative Work Behavior. Moreover, the model manages to create a mediating variable of Organizational Ambidexterity and the moderating impact of Innovative Work Behavior. OA (H4:  $\beta = 0.491$ , p < 0.001) is the most strongly related direct predictor of SOP. Such a close and favorable relationship highlights the paramount significance of the capacity of a firm to simultaneously take advantage of the available resources and seek alternative avenues of attaining sustainability. This observation is consistent with the study conducted by Martínez-Falcó et al. (2024), who state that OA is one of the most critical dynamic capabilities needed to be viable in the long run in complex settings. The huge beta points to investments in the development of ambidextrous capabilities paying off in high returns balanced economic, environmental, and social performance. Additionally, the elements of GIC also show that they have significant direct impacts on SOP. GHC (H1:  $\beta = 0.231$ , p < 0.001) came out as a powerful force, which provides evidence that the amount of knowledge, skills, and commitment of employees related to environment are priceless assets. This finding supports the results obtained by Shayegan, Bazrkar, and Yadegari (2023), who assume that the implementation of sustainable practices is impossible without environmentally literate and trained employees. In a similar manner, GSOC (H3:  $\beta = 0.147$ , p < 0.001) showed significance, and it proves that trust, shared vision, and work networks around environmental objectives support knowledge sharing and collective action in achieving sustainability goals as put forth by Hina et al. (2024). Although not of the greatest importance, GSC (H2:  $\beta = 0.540$ , p < 0.001) had the minimal direct impact. This is to suggest that databases, management systems, patents and processes (structural capital) can serve as enablers as opposed to being performance drivers thus displaying their effects indirectly via other variables such as ambidexterity. Another significant direct relationship is between IWB (H5:  $\beta = 0.126$ , p < 0.001) and SOP, which confirms the fact that employee-driven innovation is a crucial micro-level input of macro-level sustainability outputs (Liu, Khan, & Raju, 2023).

The strong findings of the GIC is a decisive precursor of OA. Amazingly, the strongest predictor is GSC (H7:  $\beta$  = 0.605, p < 0.001). This is to imply that green databases, information systems and formalized procedures give a firm the infrastructural support and knowledge base that enables the organization to efficiently operate its present operations (exploitation) as well as give the data-driven insights that the organization requires to pursue new and sustainable innovations. This result is agreeable with the resource based perspective which emphasizes on the importance of distinctive internal resources in the creation of capabilities. OA is also significantly predicted by GHC (H6:  $\beta$  = 0.269, p < 0.001) and GSOC (H8:  $\beta$  = 0.189, p < 0.01). The agents who refine the existing processes and produce the new ideas are the employees that possess green expertise (human capital). In the meantime, the existence of strong social networks (social capital) facilitates the fact that these ideas can be exchanged, criticized and combined across units, a condition of ambidextrous learning (Asiaei et al., 2023; Taha, Siam, Alshurafat, & Al Shbail, 2024).

An important addition to the research is that it supports H9 that states that OA has a positive relationship with SOP that is enhanced by IWB ( $\beta = 0.294$ , p < 0.05). The existence of this significant interaction effect suggests that the beneficial influence of the OA on the performance does not manifest itself uniformly; it is more pronounced in a setting in which employees actively participate in IWB. This goes with the behavioral integration notion whereby the structural capability (ambidexterity) of an organization is enacted and developed through self-willing actions of its members (Ajmal et al., 2025). Simply put, ambidexterity is the framework and employee innovation is the engine to maximize this to achieve long-term sustainability.

#### Conclusion

The empirical findings are thoroughly endorsing the model under hypothesis. The research contributes greatly. Measuring impact shows the relative strength (through beta values) of the individual green assets on performance and ambidexterity, and GIC is the ultimate contributor to ambidexterity itself. Setting up mediation to ensure that the OA is a key mediating variable that promotes the role of GIC in the SOP. Exploring a boundary condition identifying IWB as a notable moderator, in which the ambidexterity-performance relationship is conditional upon an enabling behavioral environment. These results strongly combine the literature on Resource-Based View, Intellectual Capital theory, and dynamic capabilities as they provide a sensitive insight into how intangible green resources can be converted into tangible sustainable performance results based on the critical organizational capabilities and behaviors.

#### **Managerial Implications**

According to the results, managers ought to invest most in GIC, more so in the development of a strong Green Structural Capital (systems, databases) because it is the biggest contributor of Organizational Ambidexterity. It is also necessary to develop this essential capability by developing Green Human and Social Capital by means of specific training and group platforms. Moreover, a culture that supports IWB should be actively promoted by the leadership because of its direct impact on the performance and the role of it in the considerable amplification of the beneficial consequences of ambidexterity on the sustainability results. Finally, two-fold approach of enabling systems and empowering employee innovation is the key to attaining high and sustainable organizational performance.

#### **Limitations and Future Research Direction**

There are limitations in this study. This cross-sectional design does not allow making a clear causal conclusion. Also, there is a chance of generalizability bias due to sample, which may be geographically or industry-based in the sample. Longitudinal designs should be used in future studies to determine causality and data on multiple sources should be gathered to reduce bias. It would contribute to better external validity of these findings by increasing the sample to different cultural and industrial settings. To achieve a more detailed theoretical framework, it may be

necessary to investigate additional possible mediators such as green culture, or moderators, such as leadership styles.

#### References

- Abid, N., Ceci, F., & Aftab, J. (2024). Attaining sustainable business performance under resource constraints: Insights from an emerging economy. *Sustainable Development*, *32*(3), 2031-2048.
- Ahlawat, D., Sharma, P., & Kumar, S. (2023). A systematic literature review of current understanding and future scope on green intellectual capital. *Intangible Capital*, 19(2), 165-188.
- Ajmal, M., Sareet, Z., & Islam, A. (2024). Unleashing innovation through employee voice behavior in the hotel industry: the impact of ambidextrous leadership on innovative work behavior. *Journal of Hospitality and Tourism Insights*.
- Ajmal, M., Sareet, Z., & Islam, A. (2025). Unleashing innovation through employee voice behavior in the hotel industry: the impact of ambidextrous leadership on innovative work behavior. *Journal of Hospitality and Tourism Insights*, 8(2), 448-471.
- Al-Omoush, K. S., Simón-Moya, V., & Sendra-García, J. (2020). The impact of social capital and collaborative knowledge creation on e-business proactiveness and organizational agility in responding to the COVID-19 crisis. *Journal of Innovation & Knowledge*, *5*(4), 279-288.
- Albhirat, M. M., Zulkiffli, S. N. A., Salleh, H. S., & Zaki, N. A. M. (2023). The Moderating Role of Social Capital in the Relationship Between Green Supply Chain Management and Sustainable Business Performance: Evidence from Jordanian SMEs. *International Journal of Sustainable Development & Planning*, 18(6).
- Alfarizi, M., Widiastuti, T., & Ngatindriatun. (2024). Exploration of technological challenges and public economic trends phenomenon in the sustainable performance of Indonesian digital MSMEs on industrial era 4.0. *Journal of Industrial Integration and Management*, *9*(01), 65-96.
- Alharbi, B. F. M. (2025). Project Management Green Commitment in PMI, Saudi Arabia: How Green Intellectual Capital, Green HRM, Green Training and Innovativeness Influence Project Performance. *Journal of Ecohumanism*, 4(1), 4397–4417-4397–4417.
- AlKetbi, A., & Rice, J. (2024). The impact of green human resource management practices on employees, clients, and organizational performance: A literature review. *Administrative Sciences*, 14(4), 78.
- Altaee, M.-A., Saleh, R. A. S., AlZeer, I., & Tunsi, W. (2024). The impact of green human resources management practices on the organizational ambidexterity: Jordan food and drug administration case study *Artificial Intelligence and Economic Sustainability in the Era of Industrial Revolution 5.0* (pp. 1095-1107): Springer.
- Anuar, A., Saad, R., & Yusoff, R. Z. (2018). Operational performance and lean healthcare in the healthcare sector: Review on the dimensions and relationships. *Int. J. Acad. Res. Bus. Soc. Sci,* 8(4), 276-292.
- As'ad, A., Brasit, N., Muis, M., & Umar, F. (2024). Unveiling the antecedents of sustainable performance: Insights from hospitality industry managers. *Problems and Perspectives in Management, 22*(4), 299.
- Asghar, M., Ullah, I., & Bangash, A. H. (2025). Green inclusive leadership and green creativity in the manufacturing industry: do green human capital and employee voice matter? *International Journal of Innovation Science*, 17(2), 419-437.
- Asiaei, K., O'Connor, N. G., Barani, O., & Joshi, M. (2023). Green intellectual capital and ambidextrous green innovation: The impact on environmental performance. *Business Strategy and the Environment*, 32(1), 369-386.

- Astuti, P. D., Datrini, L. K., & Chariri, A. (2023). Understanding the antecedents and consequences of sustainable competitive advantage: testing intellectual capital and organizational performance. *Economies*, 11(4), 120.
- Astuti, P. D., Datrini, L. K., Chariri, A., & Januarti, I. (2025). Do Green Mindfulness, Green Intellectual Capital, and Green Ambidexterity Encourage Sustainability Performance to Achieve Sustainable Development Goals? *Journal of Lifestyle and SDGs Review, 5*(3), e04439-e04439.
- Basit, S. A., Gharleghi, B., Batool, K., Hassan, S. S., Jahanshahi, A. A., & Kliem, M. E. (2024). Review of enablers and barriers of sustainable business practices in SMEs. *Journal of Economy and Technology*, *2*, 79-94.
- Begum, S., Ashfaq, M., Asiaei, K., & Shahzad, K. (2023). Green intellectual capital and green business strategy: the role of green absorptive capacity. *Business Strategy and the Environment, 32*(7), 4907-4923.
- Cabrita, M. d. R., & Bontis, N. (2008). Intellectual capital and business performance in the Portuguese banking industry. *International Journal of technology management*, 43(1-3), 212-237.
- Chin, W. W. (2009). How to write up and report PLS analyses *Handbook of partial least squares: Concepts, methods and applications* (pp. 655-690): Springer.
- Elmakkawy, M. H., Hassan, H., & Magdy, A. (2025). Does green intellectual capital matter for green ambidexterity? Insights from the hotel industry. *Tourism and Hospitality Research*, 14673584251361233.
- Elnagar, A. K., & Aljuwaiber, A. (2025). The nexus of green intellectual capital and sustainable performance: leadership commitment and knowledge sharing as influences. *Journal of Intellectual Capital*, 1-29.
- Fatima, K., Ahmed, A., & Mahnoor, A. H. S. (2023). Green intellectual capital driving environmental performance: the mediating role of green ambidexterity and moderating influence of environmental ethics. *Sustainable Trends and Business Research*, 1(2), 62-75.
- Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics: Sage Publications Sage CA: Los Angeles, CA.
- Gefen, D., & Straub, D. (2005). A practical guide to factorial validity using PLS-Graph: Tutorial and annotated example. *Communications of the Association for Information systems, 16*(1), 5.
- Ghodbane, A., & Alwehabie, A. (2023). Academic entrepreneurial support, social capital, and green entrepreneurial intention: does psychological capital matter for young Saudi graduates? *Sustainability*, 15(15), 11827.
- Hadi, S., Setiawati, L., Kirana, K. C., Lada, S. B., & Rahmawati, C. H. T. (2024). The effect of digital leadership and organizational support on innovative work behavior: The mediating role of emotional intelligence. *Calitatea*, *25*(199), 74-83.
- Hafeez, M., Yasin, I., Zawawi, D., Odilova, S., & Bataineh, H. A. (2025). Unleashing the power of green innovations: the role of organizational ambidexterity and green culture in achieving corporate sustainability. *European journal of innovation management*, 28(6), 2304-2336.
- Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. *European business review*, *31*(1), 2-24.
- Hina, K., Khalique, M., Shaari, J. A. N., Mansor, S. A., Kashmeeri, S., & Yaacob, M. R. b. (2024). Nexus between green intellectual capital and the sustainability business performance of manufacturing SMEs in Malaysia. *Journal of Intellectual Capital*, 25(2-3), 233-252.
- Hoang Thanh, N., & Truong Cong, B. (2024). Investigating the mediating role of green performance measurement systems in the nexus between green intellectual capital and environmental performance. *Social Responsibility Journal*, 20(10), 2237-2258.
- Hwang, B.-N., Lai, Y.-P., & Wang, C. (2023). Open innovation and organizational ambidexterity. *European journal of innovation management, 26*(3), 862-884.

- Janssen, O. (2000). Job demands, perceptions of effort-reward fairness and innovative work behaviour. Journal of Occupational and organizational psychology, 73(3), 287-302.
- Jiang, Y., Jamil, S., Zaman, S. I., & Fatima, S. A. (2024). Elevating organizational effectiveness: synthesizing human resource management with sustainable performance alignment. *Journal of Organizational Effectiveness: People and Performance*, 11(2), 392-447.
- Kalubanga, M., & Gudergan, S. (2022). The impact of dynamic capabilities in disrupted supply chains— The role of turbulence and dependence. *Industrial Marketing Management*, 103, 154-169.
- Khan, M. H., & Muktar, S. N. (2024). Green employee empowerment: The missing linchpin between green HRM and sustainable organizational performance. *Journal of Cleaner Production, 434*, 139812.
- Khan, S., Rashid, A., Rasheed, R., & Amirah, N. A. (2023). Designing a knowledge-based system (KBS) to study consumer purchase intention: the impact of digital influencers in Pakistan. *Kybernetes*, 52(5), 1720-1744.
- Lewaherilla, N. C., Sutrisno, S., Ausat, A. M., & Gadzali, S. (2024). The Relationship Between Intellectual Capital, Innovative Work Behavior, and Business Performance. *Quality-Access to Success*, 25(201).
- Liu, H., Khan, M. S., & Raju, V. (2023). Enhancing Sustainable Organization Performance: Investigating the Mediating Influence of Innovative Work Behavior and Its Associated Factors. *International Journal of Membrane Science and Technology*, 10(4), 1852-1867.
- Mahmood, T., & Mubarik, M. S. (2020). Balancing innovation and exploitation in the fourth industrial revolution: Role of intellectual capital and technology absorptive capacity. *Technological Forecasting and Social Change, 160,* 120248.
- Mahmood, T., Mubarik, M. S., Islam, T., & Naghavi, N. (2021). Ambidextrous intellectual capital (AIC): a measuring framework *The dynamics of intellectual capital in current era* (pp. 1-30): Springer.
- Mankgele, K. P. (2023). The effect of organizational ambidexterity on the sustainable performance of SMEs in the Limpopo province of South Africa. *International Journal of Research in Business & Social Science*, 12(2).
- Marco-Lajara, B., Zaragoza-Sáez, P. C., Martínez-Falcó, J., & Sánchez-García, E. (2023). Does green intellectual capital affect green innovation performance? Evidence from the Spanish wine industry. *British Food Journal*, *125*(4), 1469-1487.
- Mardani, A., Kannan, D., Hooker, R. E., Ozkul, S., Alrasheedi, M., & Tirkolaee, E. B. (2020). Evaluation of green and sustainable supply chain management using structural equation modelling: A systematic review of the state of the art literature and recommendations for future research. *Journal of Cleaner Production, 249*, 119383.
- Martínez-Falcó, J., Marco-Lajara, B., Zaragoza-Sáez, P., & Sánchez-García, E. (2024). The effect of organizational ambidexterity on sustainable performance: A structural equation analysis applied to the Spanish wine industry. *Agribusiness*, 40(4), 773-803.
- Mehrabi, S., Mahdad, M., Bijman, J., Cholez, C., Mesa, J. C. P., & Giagnocavo, C. (2025).

  Microfoundations of dynamic capabilities enabling scaling pathways of sustainability-oriented innovation business models. *Business Strategy and the Environment, 34*(1), 849-871.
- Moreno-Luzon, M., Gil-Marques, M., Lloria, M. B., & Salas-Vallina, A. (2024). Quality-oriented human resource practices (QHRP), ambidextrous culture and organizational ambidexterity: a study of green agro-food companies. *European Journal of Management and Business Economics*, 33(3), 253-271.
- Mubarik, M. S., Bontis, N., Mubarik, M., & Mahmood, T. (2022). Intellectual capital and supply chain resilience. *Journal of Intellectual Capital*, *23*(3), 713-738.

- Nawangsari, L. C., Siswanti, I., Arijanto, A., & Wahyu, M. (2025). From Knowledge to Action: Exploring Green Intellectual Capital's Role in Sustainable Organizational Performance for Millennials. *International Review of Management and Marketing*, 15(1), 82.
- Odhano, Q. A., Mahmood, T., Naqvi, S. R., & Ahmed, M. (2025). From Knowledge to Growth: How Intellectual Capital Drives Technological Innovation and Firm Performance in Pakistan's Manufacturing Sector. *Annual Methodological Archive Research Review*, *3*(6), 147-162.
- Pashazadeh, Y., & Teymoriazar, P. (2025). Analyzing the Effect of Second-Order Social Capital on Green Exploitative and Exploratory Innovation. *Social Capital Management*, 12(1), 77-94.
- Rehan, M. H., Yeo, S. F., Khan, I. U., & Tan, C. L. (2025). Redefying the strength between CSR and sustainable social performance through mediational role of green intellectual capital. *Cleaner and Responsible Consumption*, *16*, 100238.
- Restuputri, D. P., Masudin, I., Septira, A. P., Govindan, K., & Widayat, W. (2024). The role of knowledge management to improve organizational performance through organizational ambidexterity within the uncertainties. *Business Process Management Journal, 30*(7), 2237-2282.
- Rezaei, F., Khalilzadeh, M., & Soleimani, P. (2021). Factors affecting knowledge management and its effect on organizational performance: Mediating the role of human capital. *Advances in Human-Computer Interaction*, 2021(1), 8857572.
- Sarmento, M., Simoes, C., & Lages, L. F. (2024). From organizational ambidexterity to organizational performance: The mediating role of value co-creation. *Industrial Marketing Management, 118*, 175-188.
- Schöggl, J. P., Stumpf, L., & Baumgartner, R. J. (2024). The role of interorganizational collaboration and digital technologies in the implementation of circular economy practices—Empirical evidence from manufacturing firms. *Business Strategy and the Environment, 33*(3), 2225-2249.
- Shahbaz, M. H., Ahmad, S., & Malik, S. A. (2025). Green intellectual capital heading towards green innovation and environmental performance: assessing the moderating effect of green creativity in SMEs of Pakistan. *International Journal of Innovation Science*, 17(3), 683-704.
- Shahbaz, M. H., & Malik, S. A. (2025). Driving firm performance with green intellectual capital: the key role of business sustainability in SMEs. *Journal of Intellectual Capital*, *26*(3), 691-715.
- Shahbaz, M. H., Naseem, M. A., Battisti, E., & Alfiero, S. (2024). The effect of green intellectual capital and innovative work behavior on green process innovation performance in the hospitality industry. *Journal of Intellectual Capital*, 25(2/3), 402-422.
- Shayegan, S., Bazrkar, A., & Yadegari, R. (2023). Realization of sustainable organizational performance using new technologies and green human resource management practices. *Foresight and STI Governance*, 17(2), 95-105.
- Shehzad, M. U., Zhang, J., Dost, M., Ahmad, M. S., & Alam, S. (2023). Linking green intellectual capital, ambidextrous green innovation and firms green performance: evidence from Pakistani manufacturing firms. *Journal of Intellectual Capital*, 24(4), 974-1001.
- Siddiqui, F., Anwer, N., John, A., & Rabie, M. O. (2024). The Role of Human Capital in Fostering Organizational Ambidexterity: A Study of IT Firms in Pakistan. *Journal of Asian Development Studies*, 13(1), 491-503.
- Son, B.-G., Roscoe, S., & Sodhi, M. S. (2025). Dynamic capabilities of global and local humanitarian organizations with emergency response and long-term development missions. *International Journal of Operations & Production Management*, 45(1), 1-32.
- Soomro, F. A., & Afridi, F. K. (2023). Impact of intellectual capital on sustainable organizational performance with mediating role of human resource and moderating role of employee engagement. *International Journal of Business and Management Sciences*, 4(4), 128-156.
- Srirahayu, D. P., Ekowati, D., & Sridadi, A. R. (2023). Innovative work behavior in public organizations: A systematic literature review. *Heliyon*, *9*(2).

- Taha, N., Siam, W., Alshurafat, H., & Al Shbail, M. O. (2024). Does organizational ambidexterity mediate the relationship between intellectual capital and financial performance. *Journal of Intellectual Capital*, 25(4), 711-743.
- Teece, D., Peteraf, M., & Leih, S. (2016). Dynamic capabilities and organizational agility: Risk, uncertainty, and strategy in the innovation economy. *California management review*, *58*(4), 13-35.
- Utomo, H. J. N., Irwantoro, I., Wasesa, S., Purwati, T., Sembiring, R., & Purwanto, A. (2023). Investigating the role of innovative work behavior, organizational trust, perceived organizational support: an empirical study on SMEs performance. *Journal of Law and Sustainable Development, 11*(2), e417-e417.
- Wang, S., & Zhang, H. (2025). Enhancing SMEs sustainable innovation and performance through digital transformation: Insights from strategic technology, organizational dynamics, and environmental adaptation. *Socio-Economic Planning Sciences*, *98*, 102124.
- Wei, S., Wang, L., Jiang, W., & Feng, T. (2024). Environmental leadership and green intellectual capital: the roles of green human resource management and environmental climate. *Journal of intellectual capital*, 25(5/6), 1062-1082.
- Zahid, Z., Zhang, J., Shahzad, M. A., Junaid, M., & Shrivastava, A. (2024). Green Synergy: Interplay of corporate social responsibility, green intellectual capital, and green ambidextrous innovation for sustainable performance in the industry 4.0 era. *PloS one*, 19(8), e0306349.